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Abstract The process of resonance assignment repre-

sents a time-consuming and potentially error-prone bot-

tleneck in structural studies of proteins by solid-state NMR

(ssNMR). Software for the automation of this process is

therefore of high interest. Procedures developed through

the last decades for solution-state NMR are not directly

applicable for ssNMR due to the inherently lower data

quality caused by lower sensitivity and broader lines,

leading to overlap between peaks. Recently, the first efforts

towards procedures specifically aimed for ssNMR have

been realized (Schmidt et al. in J Biomol NMR

56(3):243–254, 2013). Here we present a robust automatic

method, which can accurately assign protein resonances

using peak lists from a small set of simple 2D and 3D

ssNMR experiments, applicable in cases with low sensi-

tivity. The method is demonstrated on three uniformly 13C,
15N labeled biomolecules with different challenges on the

assignments. In particular, for the immunoglobulin binding

domain B1 of streptococcal protein G automatic assign-

ment shows 100 % accuracy for the backbone resonances

and 91.8 % when including all side chain carbons. It is

demonstrated, by using a procedure for generating artificial

spectra with increasing line widths, that our method,

GAMES_ASSIGN can handle a significant amount of

overlapping peaks in the assignment. The impact of

including different ssNMR experiments is evaluated as

well.

Keywords Software � Resonance assignments � Solid

state NMR � Proteins

Introduction

Resonance assignments (RAs) is the first fundamental step

in the process of structure determination of proteins based

on NMR spectra and is a prerequisite in all studies of

interactions and dynamics in proteins. Manual derivation of

the RA requires experienced and skilled human interpre-

tation and is often very time consuming. Nowadays,

increasingly larger and more complicated systems are

being studied (Griswold and Dahlquist 2002; Fiaux et al.

2002; Xu et al. 2006) in particular in the solid state (Ha-

benstein et al. 2011; Gath et al. 2012; Kulminskaya et al.

2012), which prompts for the inclusion of more and more

experimental data and data of higher dimensionality. With

this increasing complexity, the data set could even ulti-

mately be too overwhelming and cumbersome for a human

to comprehend. Automatic methods were introduced dec-

ades ago to analyze liquid-state NMR data (Bartels et al.

1996, 1997; Lukin et al. 1997; Zimmerman et al. 1997;

Leutner et al. 1998; Moseley and Montelione 1999; Atreya

et al. 2000; Moseley et al. 2001; Coggins and Zhou 2003;

Hitchens et al. 2003; Malmodin et al. 2003; Altieri and

Byrd 2004; Baran et al. 2004; Jung and Zweckstetter 2004;

Eghbalnia et al. 2005; Schmucki et al. 2009; Crippen et al.

2010) as reviewed in (Guerry and Herrmann 2011). For
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solid-state NMR (ssNMR), however, the data is often of

inferior quality due to lower sensitivity and broader lines

leading to overlapping signals. Furthermore, the types of

data are different for ssNMR with two notable complica-

tions. Unless you extensively deuterate samples (Chevel-

kov et al. 2006; Zhou et al. 2012), protons are rarely

detected implying that the strategy of 1H–15N double-axis

alignments for peak combination cannot be used making

spin system generation a non-trivial task. In addition,

homonuclear 13C–13C correlations are mostly achieved

through dipole–dipole coupling interactions, i.e. trough

space, thus complicating the process of side-chain RAs.

Accordingly, methods for liquids are not generally trans-

mittable to ssNMR. Despite these challenges, software has

been developed revealing pioneering results for special

cases of ssNMR data (Moseley et al. 2010; Tycko and Hu

2010; Hu et al. 2011). Recently, a special version of FLYA

(Schmidt and Guntert 2012), called ssFLYA (Schmidt et al.

2013), which is capable of assigning the resonances of

general types of ssNMR data was presented. This assign-

ment method is based on constructing an optimal mapping

between observed and expected peaks. However, in

ssNMR there will often be overlapping peaks, which pre-

cludes a one-to-one mapping.

Here we present a new method, GAMES_ASSIGN

(Genetic Algorithm using Maximum Entropy for Solid

state NMR resonance ASSIGNments of proteins), which is

applicable to general types of ssNMR data of average

quality (see ‘‘Methods’’). We demonstrate that this method

is capable of handling spectral overlap, and we analyze

systematically the influence of the resonance line width on

the assignment accuracy. Our method uses only unassigned

peak lists and the protein sequence as input and is based on

three phases: (1) Spin system generation, (2) RAs, and (3)

completion of the assigned spin systems allowing a peak

occasionally to have more than one assignment. All phases

share the concept of item pairing by joining peaks, spin

systems, and/or residue positions in the sequence in dif-

ferent combinations. Here we adopt a unified approach for

the pairing in all phases using the concepts of maximum

entropy and normal-variate-rank selection to make the easy

decisions first in stochastic setup. GAMES_ASSIGN is

available at http://nmr.au.dk/software/.

Methods

Overview of the process of resonance assignments

GAMES_ASSIGN assigns the resonances automatically

for a protein using unassigned peak lists from solid state

NMR experiments. Most common ssNMR experiments

can be used, such as f.ex. NCACX, NCACO, NCOCX,

NCOCA, CONCA and through-space experiments such as

DARR-type experiments. Proton experiments are not yet

implemented but a general 13C/15N experiment can be

included by specifying the atom type (N/C0/Ca, etc. and

CX for any carbon) for each axis of the experiment and

the residue order (e.g. intra-residue or preceding residue)

for each transfer step. The RAs are performed through

three consecutive phases based on stochastic choices. The

method is briefly summarized in Fig. 1. In the first phase

(I), peaks are paired one-by-one to form more or less

complete spin systems. If a peak is paired with another

peak, which is in turn already paired with a third one, all

three will become part of the new spin system. In the

second phase (II), sequence specific assignments are

conducted by incrementally pairing spin systems through

linking or pairing a spin system with a specific position in

the protein amino acid sequence. These two phases are

repeated multiple times to provide a selection of candi-

dates for RAs. The third and final phase (III) uses the

statistics of the initial two phases to rebuild the spin

systems. Finally, the incomplete spin systems are com-

pleted aiming to assign all missing resonances and provide

assignments for all peaks. Due to the stochastic decision-

making in the algorithm, the procedure will produce dif-

ferent outcomes when repeated multiple times, and the

result with the best statistics can be chosen. All phases are

summarized in Fig. 1 and described in detail below.

Stochastic pairing scheme: MENOVAR

In all stages of the algorithm, different pairings are per-

formed. We designed a special protocol, MENOVAR

(Maximum Entropy Normal-Variate Rank), in order to do

the pairing stochastically, but biased towards the more

probable pairings. For a given item, for example, a peak

or a spin system, there is a set of possible pairings: peak-

to-peak matching (alignment) or spin system to residue

matching (spin system typing). To control this process, a

pairing ‘‘energy’’, Epair, (an energy, which should be

minimized) is calculated by a procedure depending on the

particular pairing (see below). Using this energy an un-

normalized likelihood of pairing p = exp(-Epair), can be

calculated for each pairing candidate. After normalizing,

all probabilities for an item sum to unity. In our protocol,

the pairing for a given item is found by roulette wheel

selection (Tang et al. 1996) selecting a pairing with a

statistical rate equal to its estimated probability. Further-

more, to direct the algorithm, prior to the roulette wheel

selection, the first item for the pairing is selected by a

‘‘minimum entropy selection’’. The entropy, H, for a

given item is calculated by summing the normalized

probabilities, pi, weighted by the logarithm of the

probability.
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H ¼ �
XN

i¼1

pi ln pið Þ ð1Þ

The items with the lowest entropy will have the most

unique choice of pairing compared to the ones with higher

entropy. All items are first ranked according to the value of

the entropy and the first item of the pairing is then chosen

stochastically using a normal-variate-rank scheme. In

phase I, (but not in phases II and III) a linear-combination

of the entropy and the minimum pairing energy is used for

the ranking. In this scheme a random number is drawn from

a normal distribution N(0,r) and the absolute value of this

number is rounded to the nearest integer and the member

from the ordered list is chosen as the one with this par-

ticular rank. By using standard deviations, r, which are

small compared to the total size, better pairings will be

chosen more frequently.

Phase I: generation of spin systems

In the first phase, peaks are combined into clusters of

peaks. In the initial step the peaks are paired one-by-one

based on the agreement of peak frequencies on the shared

axes. A pairing of two peaks initializes a peak cluster. If

a peak is paired with a peak from a peak cluster, the new

peak will also be appended to this peak cluster. Further-

more, if two peaks from two different clusters are paired,

the two corresponding clusters will merge into one single

cluster. This procedure, as summarized in Fig. 2, leads to

the formation of a set of peak clusters, which are neither

yet assigned to a residue type nor sequence specific. At

the end of the clustering process, the peak clusters are

interpreted as spin systems based on the experiment

definitions.

Fig. 1 Overview of the GAMES_ASSIGN algorithm. The genera-

tion, starting with the unassigned peaks, of clusters, (incomplete) spin

systems, and resonance assignments (RAs) are shown in the flow chart

to the left. Each arrow represents parts of the algorithm outlined to the

right. A1.1 is shorthand for Algorithm 1.1 explained in detail in the

corresponding section with that heading in the text (some of the

sections are shown only in the supplementary information). For

further visualization of A1.3–A1.3, see Fig. 2. Two converging

arrows from one item indicate that the operation requires two items,

such as 1.1 where two peaks are combined to form a cluster. Two

entangled arrows represented a recombination process in a GA.

Algorithms 1.1 through 2.2 are run in parallel 400 times keeping the

best scoring 64 RAs for the statics generation. Algorithms 3.1 through

3.3 are cycled 4 times each time producing 400 RAs and keeping the

best 64. After the final cycle A3.4 is executed

Fig. 2 Visualization of algorithms: A1.1–A1.3. A peak is shown as a

box, with different colors for different experiments (here the blue

boxes correspond to experiment with only one expected peak such as

NCACO. Peaks from similar experiments are collected in stacked

columns, a peak cluster is shown as connected columns of peaks. The

individual algorithms are marked at the arrows for the related process

with numbering corresponding to headings of the sections in the text.

A1.3 is described in Supplementary Material
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Algorithm 1.1: free alignment of peaks

In the first step of phase I, two peaks are paired (aligned)

without any preference for the type of the experiment

related to the pairing. In contrast, the next step considers

only a subset of the pairings chosen to assist formation of

typical spin systems (see below). The pairing energy,

Epair, as described above, controls the pairing of two

peaks. The energy can be interpreted as the logarithm of

the likelihood of a correct peak alignment. Here we use

an energy inspired by the exponential argument for the

normal distribution, leading to an expression for the

coordinate match energy, Ec, based on the Euclidian

distance:

Ec ¼
XN

n¼1

1

2
xi;n � xj;n

� �
=rn

� �2 ð2Þ

where xi,n and xj,n are the observed peak frequencies for

peaks i and j, respectively, in the n’th aligned dimension.

An aligned dimension is an axis sharing the same atom

type, e.g., peaks from NCACB and NCACO share the two

first axes corresponding to N and Ca. The difference is

scaled by the average of estimated uncertainties (which

must be provided by the user), rn, for the two experiments

on the particular axis. To summarize, the probability for

each peak to match with other peaks are calculated based

on the energy, the entropy is calculated and the first peak in

the pair is chosen using the normal-variate rank selection

procedure. The partner for pairing is subsequently chosen

using the Roulette wheel selection. This procedure leads to

the formation of clusters of peaks.

Algorithm 1.2: guided merging of complementary peak

clusters

The second step starts with the peak clusters generated

from the step above. Before two peak clusters are paired

into one resulting cluster, their possibility of combination is

evaluated with the count expectation rule (see Algorithm

1.3 in Supplementary Material). In this case, two experi-

ments with non-empty subsets that share the most axes

(e.g., NCACX and CONCA shares two) are identified. The

energy of pairing is defined as the average of the normal

pairing energy between all combinations of peak pairs from

the two subsets identified by the procedure described

above. The pairing is performed using the MENOVAR

algorithm similar to the first step.

Algorithm 1.3: guided completion of peak clusters

The third step aims at completing the peak clusters; all

details can be found in the Supplementary Material.

Algorithm 1.4: interpreting peak clusters as spin systems

In the final step of phase I, the clusters of related peaks are

interpreted as (incomplete) dipeptide ‘‘spin systems’’

henceforth referred to just as spin systems (SSYs). For each

peak in the cluster, i.e. for each axis of the peak coordinates

in different experiments, there is a definition of atom type

i.e. 15N or 13C, residue order 0 or -1, denoting atoms for

residues i and i-1, respectively, and in some case specific

atom (atom name) such as C’, Ca or Cb. For example for a

peak in a NCACX peaks list, atom type = (15N, 13C, 13C),

residue order = (0, 0, 0), atom name = (N, Ca, None),

where ‘‘None’’ denotes a non-specific atom. In this study,

per definition, for 2D/3D 13C-DARR, the residue orders are

set to (0, 0)/(0, 0, 0) to avoid duplicate membership in

SSYs. Following these definitions, the chemical shifts from

different peaks and dimensions pointing to the same

combination of residue order and atom name (referred to

here as atom with order) are grouped leading to sets of

chemical shifts. Resulting chemical shifts sets are obtained

for N(i), Ca(i)/(i-1), C’(i)/(i-1), Cb(i)/(i-1) depending

on the experimental data available for the specific protein

studied and, in addition, chemical shift sets for non-specific

carbons CX(i) and CX(i-1). For each chemical shift set

related to a specific atom, the average chemical shift is

calculated and the mapping between atoms with order and

the average chemical shifts constitutes the temporary

incomplete non-assigned SSYs—to be optimized in the

next phases. The CX chemical shifts sets are treated as a

special case because they contain convoluted chemical

shifts for several different 13C atoms in a residue. These

sets are expected to contain an a priori unknown number of

merged populations, which each are normal distributions

with unknown population size and average value. The

standard deviation for the sub-populations is easier esti-

mated as a typical uncertainty of the experiment. GAME-

S_ASSIGN implements a heuristic stochastic algorithm

optimized for speed to identify the underlying subpopula-

tions in the CX chemical shift deconvoluting the set into a

group of subsets related to still unspecific but distinct 13C

atoms (see Supplementary Material).

Phase II: sequence specific spin systems assignments

In phase II, the resonances are tentatively assigned by

sequence specific assignments using the set of (incomplete)

spin systems generated in phase I. This procedure of spin

system based sequence specific RAs is a so-called qua-

dratic assignment problem (QAP) as discussed before

(Eghbalnia et al. 2005), which is known to be computa-

tionally intensive and hence cannot be solved exhaustively

(Nagarajan and Sviridenko 2009; Cela 1998). The QAP

here consists of assigning a sequence specific position for
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each of the unassigned SSYs. Candidate assignments are

ranked according to two energies (scores): (1) The SSY

typing energy related to how likely a certain SSY is to be

due to resonances for a certain residue dipeptide step in the

sequence and (2) the SSY linking energy related to the

agreement between overlapping assignments of 13C for

SSYs assigned to consecutive positions in the sequence.

The challenge here is both, to set a good definition for the

typing and linking energies being robust enough to handle

incomplete SSYs and possibly false peaks, but also to

design an efficient global optimization algorithm for min-

imizing the total energy.

Definition of the energies for ranking of resonance

assignment candidates

The spin system typing energy, T = TS ? TN, is calculated

as a sum of contributions from the energy related to spe-

cifically assigned resonances, TS, and non-specifically

assigned resonances, TN.

TS n; sð Þ ¼
X

i¼0;�1;m2S ið ÞÞ
tmm i; n; sð Þ ð3Þ

tjkði; n; sÞ ¼ min emax;
1

2
dj;obs nð Þ � dk;ref sð Þ
� �

=rk

� �2�eobs

� �

ð4Þ

where tjk is the resonance-database value matching energy

contribution and i denotes looping through residue orders

(directions) in the sequence and expected specific atom, n 2
S (i), in residue i (such as backbone N, Ca and C0). dj,obs(n) is

the observed chemical shift for atom j, for a certain SSY, n,

and dk,ref(s) is the reference shift for the assigned residue

position, s = s(n), for SSY, n, and rk the reference standard

deviation estimated from a database of deposited assigned

chemical shifts to the specific amino acid type (Zhang et al.

2003; Nielsen et al. 2012). Furthermore, emax is a correcting

term, truncating the contribution from false peaks. Note that

the indices n and s corresponding to SSY and residues

position numbering will be implicit in expressions hence-

forth for increased readability. If a certain chemical shift,

dj,obs, is not found in the SSY then the maximum value

emiss = 1.0 is used for the contribution, tjk. This parameter is

important for analyzing ssNMR data as often data is

incomplete with missing expected peaks due to low sensi-

tivity. The application of emax is also vital, since false peaks

can be present as noise peaks but also as false peak align-

ments in the first phase, which is more pronounced for

samples with larger line widths. Furthermore, eobs = 0.75 is

a constant rewarding each included assignment. Some

experiments, such as NCACX, use through-space transfer

steps and thus produces peaks without an atom-specific

assignment possibility on the corresponding axis (atom

name, as defined in A1.4 is ‘‘None’’, corresponding to CX).

The contribution to the typing energy from these non-spe-

cifically assigned side chain resonances is calculated with a

modified expression (see Supplementary Material and

Fig. 3).

The linking energy, L = LS ? LN, is calculated for two

SSYs assigned to be in consecutive positions, i and i ? 1 in

the sequence implying that resonances should be similar

for SSYs i with order 0 and i ? 1 with order -1 as:

LS ¼
X

j

lii; ljk ¼ min emax;k;
1

2
dj;0 � dk;�1

� �
=r

� �2�eobs

� �

ð5Þ

where the summations is over atoms with specific assign-

ments and r is an estimated uncertainty for agreement

between observed assigned chemical shifts dj,0 and dj,-1 for

orders 0 and -1, respectively, for the two SSYs. Again,

similar to the definition of the typing, if one of the expected

resonances are missing from the SSY a penalty value is

used ljk = emiss (=1.0 here). Finally, the linking energy for

the non-specific atoms is defined similarly to the typing

energy, LN = LN0 ? LNR

LN0 ¼
X

j

min
k

ljk; and K ¼ \
j

arg min
k

ljk

and LNR ¼
X

k 62K

min
j

ljk

ð6Þ

CC C C
40 35 30 25 20

*$

%

1 2 3

Fig. 3 Visualization of the amino acid typing of non-specifically

assigned side chains atoms. The expected resonance positions are

indicated by normal probability distributions centered around the

average value with a standard deviation given by the sample average

from the database and shown with broken lines with corresponding

carbon atom name given below where the number indicate chemical

shifts. Here the lysine side chain carbons are provided as an example.

The observed resonance positions are shown at the top of the diagram

as black bars and annotated with numbers above. Solid arrows

indicate a match from a resonance position to a distribution and dotted

arrows indicate the reverse match. Note that there is a unique match

between resonance position, 1, and the distribution for the expected

resonance for Cb. The small symbols highlight special cases: asterisk)

The resonance position 3 corresponds to a noise peak and therefore no

matching distribution was found since the energy related to the

difference between pos. 3 and the center for Cc exceed the threshold,

emax. $) The expected peak for Ce is not matched with any observed

resonance position. %) Both the Cc and the Cd are matched to the

same resonance position, 2
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Since multiple candidate RAs are derived in parallel

with different sets of assembled SSYs, an energy, S(n),

describing the quality of the SSY, n, is included:

S nð Þ ¼ 1

N

XN

i

si nð Þ; si nð Þ ¼ min 5:0k2; r Ri nð Þð Þ2
� �

ð7Þ

where the index, i, runs across all atom types in the SSY,

r(Ri(n)) denotes the sample deviation among all coordi-

nates, Ri, assigned to the same resonance and is set to

r = k2 if there is only one single coordinate in the set. By

this definition the total energy, Etot, for a given RA, s, a

certain SSY, n, assigned to residue position, s(n), and

linked to SSY, m, is:

Etot s; nð Þ ¼ S nð Þ þ L n;mð Þ þ T n; s nð Þð Þ;
m ¼ s�1ðs nð Þ � 1Þ

ð8Þ

Following this definition the total protein RA energy,

ERA becomes:

ERA s;Kð Þ ¼ 1

N

X

n2K

Etot s; nð Þ þ Eviol s;Kð Þ ð9Þ

where N is the number of residues in the protein and Eviol is

a violation term, which adds a fixed penalty to the total

energy for each unassigned SSY in the set of SSYs, K, and

each residue position which is not mapped by s, and adds

another constant violation for each peak not assigned to

any SSY.

The total energy is also defined for a certain residue

position, t = s(n). For this case, the typing energy is

evaluated for only one of the directions:

TS n; sð Þji ¼
X

m2SðiÞ
tmm i; n; sð Þ ð10Þ

i.e. the residue order, i, is fixed, and a similar expression is

used for the non-specifically assigned atoms. With this

definition, the position based total residue energy, E
0
tot tð Þ, is

defined as:

E
0

tot s; tð Þ ¼ S s�1 tð Þ
� �

þ 1

2
L s�1 tð Þ; s�1 t � 1ð Þ
� �

þ 1

2
L s�1 t þ 1ð Þ; s�1 tð Þ
� �

þ T s�1 tð Þ; t
� �

j0

þ 1

2
T s�1 tð Þ; t
� �

j�1 þ
1

2
T s�1 t þ 1ð Þ; t þ 1
� �

j0
ð11Þ

Algorithm for spin system based resonance assignments

The object of the RA is to find a mapping, s(n) = t, of the

spin systems, n, to the position, t, in the amino acid

sequence that minimizes the total protein RA energy, ERA

(Eq. 9). The identification of this optimal mapping is a

QAP. Here we construct a large number of different

solutions by performing pairing operations of typing and

linking SSYs using the stochastic MENOVAR scheme and

subsequently combining the solutions to form more opti-

mal solutions using a genetic algorithm (GA).

Algorithm 2.1: incremental construction of resonance

assignment mapping

The mapping is first constructed incrementally by pairwise

operations of linking two SSYs or relating a SSY to a

sequence position (typing). At the initialization of the

algorithm all SSYs are non-linked and non-typed. An SSY

can become typed, and upon linking of two SSYs a patch

of linked SSYs are formed. Note that the energies for

pairing need to be dynamically updated at each step

towards the completion of the incremental assignments.

The reason is pairing implications: once an SSY in a patch

is typed all SSYs in the patch must be typed. Also linking

to a typed SSY requires typing the new SSY (see Fig. 4).

At the beginning of the algorithm all SSYs with only one

unique possibility for linking are used to form small pat-

ches. Subsequently, all the remaining pairings are per-

formed using the principles of minimum entropy and the

normal-variate-rank selection scheme as defined above. An

example of a run of the incremental algorithm is found in

Fig. 5. The above procedure is repeated a number of times

(20 here keeping the 16 with the lowest energy) to form a

selection of candidate RAs based on the initial set of SSYs.

These candidate solutions will be subject to refinement in

the second stage of phase II.

Fig. 4 Incremental RAs based on linking and typing of spin systems.

Four different states for a spin system (SSY) are visualized by grey

boxes: Isolated, typed (but not linked), linked (patches) and assigned

(both typed and linked). The process of linking two SSYs are

illustrated by two connected arrows and a connector point, typing is

illustrated by an arrow. Some processes and states leads to an

implicated process as indicated by a ‘‘=[’’: Linking a typed SSY with

an isolated SSY implies the need for typing the isolated, whereas

typing a patch implies the need to type all SSY member of the patch

124 J Biomol NMR (2014) 59:119–134
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Algorithm 2.2: optimization of candidate resonance

assignments using a genetic algorithm

The set of candidates for RAs is a population of individ-

uals. Each residue, i, represents a gene and the SSYs, s(i),

assigned to a residue position is the value for the gene. The

population is optimized through evolution by the processes

of mutation and recombination (see below) keeping the

best solutions. One of the strengths of a GA is that it can

use the global knowledge of all candidate solutions to form

a better solution by gene combination.

Mutation of solutions In the first part of this GA opti-

mization, weak genes are replaced. This means that residue

positions have their assigned SSY removed and subse-

quently the RA is reconstructed (to hopefully form a more

optimal solution) using all unassigned SSYs following the

MENOVAR procedure as described above. The choice of

residue positions, t, for removing the assigned SSY is

guided by the associated local total residue energies,

E’tot(t) (Eq. 11), more frequently removing systems with

bad corresponding energies by using the normal-variate-

rank selection scheme.

Recombination of solutions The next step is to recombine

pairs of candidate RAs (parents) to form a new RA (child).

First the two parents, p and q, are chosen randomly from

the population. Let p1, p2, …, pN denote the assigned SSYs

(value of the genes) for parent p where SSY, pi is assigned

to residue position, i, and similarly q1, q2, …, qN the genes

for parent q. After recombination the value of the gene for

the child in residue position i can be either ci = pi or

ci = qi. The genes are taken from the two parents, p and q,

to generate children according to an algorithm adding

genes from N-term to C-term for each position switching

between adding genes from a fixed parent with probability

Fig. 5 Example of an incremental assignment run. The status of the

algorithm is shown on each new line. The spin systems (SSYs) are

indicated by a single character. The assignment progress for the

protein sequence is shown to the left of the ‘‘|’’ showing typed SSYs

with characters and unassigned residue positions with ‘‘-’’. Patches

(linked, but not yet typed SSYs) are shown to the right separated by

spaces. To ease readability and to visualize the success of the

assignment run, the character used to indicate the different SSYs was

chosen related to the most likely sequential SSY assignment based on

the manual assignment; the ten digits, followed by lower case letters

and upper case letters alphabetically was used to enumerate the SSYs.

This means that ‘‘0’’ correspond to the SSY, which should be assigned

as the first residue position. In some cases there might be more than

one SSY for the same residue position, and in some cases a SSY

would be missing for a certain residue position, therefore, non-

consecutive letters (characters) can in some cases still correspond to a

correct linking. We emphasize that the manual assignments were

exclusively used for annotation purposes for this figure and were not

used in any ways to derive the automatic assignments
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pswitch = 0.12 used here. This procedure leads to the con-

catenation of consecutive stretches of genes pj, pj?1, …,

pj?n, and qi, qi?1, …, qi?m, from the two parents to form a

mixed set of genes. If the same SSY is found multiple

times for the child genes, then these positions are randomly

removed until each SSY is represented only once. In

addition, more SSYs are randomly removed until ca. 80 %

is left. Finally, the child RA is rebuilt as in the mutation

step described above using the principles of linking and

typing.

A large number of recombinations (2000 used here)

produces a large group of new solutions (large group of

children) The children compete with the parent solution

keeping the best, i.e. each time a child is generated with

energy, EC, and the highest energy of the parents is EP then

the child replaces this parent in the population immediately

if EC \ EP or if, using a soft Boltzmann criterion:

e EP�ECð Þ=TRA [ prand ð12Þ

where prand is a random number drawn between 0 and 1

and TRA is the ‘‘temperature’’ defining the scaling of the

difference (TRA = 0.05 used here throughout). Following

the evolution of the population, only the top one ranked RA

is kept for the next phase.

Analysis of results

After completion of the above RA each resonance in the

SSY is revisited. If a non-specifically assigned resonance

could still not be mapped to a specific atom, judged by

whether the value, dj,obs, is far from the nearest reference,

dk,ref, defined as 1
2

dj;obs � dk;ref

� �
=rk

� �2 [ emax, this reso-

nance is removed from the SSY and the peaks related to

that resonance are removed from the aligned peak cluster

as well. In contrast, for all resonances, which could be

assigned specifically, for each peak in SSY related to the

resonance the assigned residue position and assigned atom

name is stored. This information serves as statistics to be

used in the next phase. Since the RA was built from

incomplete SSYs, not all of the protein resonances would

be assigned in a given run. To remedy this problem, mul-

tiple RAs are generated in parallel, each time with a dif-

ferent set of generated (incomplete) SSYs from phase I,

(400 repetitions were used here, the 64 RAs with lowest

energy were used in the next phase). The reason for using

this procedure is that all resonances would be assigned at

least once.

Phase III: consensus resonance assignments

Based on the assignment data generated in phases I and II,

each peak will be assigned to a certain residue position and

atom in the sequence a different number of times. A his-

togram is generated for each peak with frequencies of

residue position assignments: f1, f2, …, fN with
PN

i¼1 fi ¼ 1

where most fi are typically 0, and for a unique assignment

one of them is 1. The position in the histogram with the

highest frequency is considered the most likely assignment

for the given peak. In this final phase, the RAs are recon-

structed from scratch based on the individual peaks but this

time using the histogram statistics to guide the assignments

(consensus assignments).

Algorithm 3.1: reconstruction of resonance assignments

The reconstruction algorithm starts by for each peak trying

to pair the peak with a sequence specific assignment. The

choice of peak selection and pairing is guided by the

MENOVAR principle as described above. The frequencies,

fi, are already normalized probabilities and are therefore

used directly to calculate the chosen entropy and for the

roulette wheel selection. If a peak is paired with a residue

position for the first time a SSY is initialized and assigned

to this position. If a SSY already exists for this position, the

peak is added to the SSY provided that the shared reso-

nances are consistent and this is quantified in the reso-

nance-coordinate match energy: Ec \ 2.0 (where Ec is

defined as in Eq. 2). This time the chemical shift value for

the related dimension of the peak and the resonance in the

SSY are matched (if one of the axes for the peak is not

shared with a value in the SSY, the contribution for this

dimension is 0).

Next two steps aims at completing the assignments by

assigning missing resonances in SSYs (A3.2 Supplemen-

tary Material) and missing atoms in the protein (A3.3

Supplementary Material).

Iterative repetition of rebuilding

Following the above steps 3.1–3.3, the assignments are

rebuilt from consensus statistics producing a new set of

candidate resonances assignments (400 here). By an iterative

procedure, the output RAs are used as input for the statistics

repeating the rebuild algorithm cycling 4 times here.

Algorithm 3.4: recombination of resonance assignments

Finally, after completing the last cycle, the best candidates

RAs are combined to generate better solutions. This is

done, as described in Algorithm 2.2, using a GA consid-

ering the sequence specifically assigned SSYs as genes.

The scheme here is somewhat different from a standard

GA. A sub-population (20 members here) is chosen from

the full population by the normal-variate-rank selection
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scheme. This population is allowed to evolve by breeding

children (1,000 steps here) where the child replaces its

weakest parent in the sub-population if the energy is lower

or accepted by a Boltzmann criterion (Eq. 12). By the end

of the evolution, the very fittest individual is copied to a

‘‘super-population’’. This procedure is repeated to produce

a super-population of 20 candidates. The recombination

process, which is used here to breed child RAs builds the

new RA sequentially. Starting from the N-terminal, a gene

is inserted from one of the parents and the initialization the

sequence is looped through each time evaluating if the

residue based energy, E0tot(s,t) (Eq. 11), for position t,

when switching to inserting the next gene from the

other parent is significantly better than for the current:

E0tot(scurrent,t) - E0tot(sother,t) [ Emin (or slightly worse

using a Boltzmann soft evaluation, see Eq. 12). The

threshold, Emin, is linearly decreased for each new step

(here from 0.5 in steps of 0.1) to bias selection towards

connected patches of SSYs from the same parent to

improve the linking between neighboring SSYs.

Following the steps in phases I–III presented so far,

the best-ranked candidate RAs, i.e. the lowest energy

RAs, are kept (20 here). This multi-step procedure is run

independently in parallel (here 32 calculations on mul-

tiple processors). Finally, these (20*32) solutions are

recombined as in 3.4 keeping finally the best 20 RAs.

The full algorithm including all three phases is summa-

rized in Fig. 1.

Statistics on results

The final 20 RAs represent an ensemble of solutions. A

final single value for a given resonance in the protein is

obtained by binning the ensemble solution into a histogram

and selecting the bin with the highest count. This value is

referred to here as the median assignment or, in brief, just

as the assignment. The standard deviation from the median

assignment is a measure of the precision and the reliability

of the assignment (the smaller the better). A phenomeno-

logical figure of merit, Qa, for the validation of the

assignment is calculated based on this number and other

quantities (see Supplementary Information).

Results

Our method, GAMES_ASSIGN, for automatic assignment

of solid state NMR resonances was evaluated on three

different biologically relevant protein systems. These sys-

tems represent proteins of different sizes and varying

quality of data, which are realistic for biologically relevant

systems and standard solid state NMR instrumentation.

Performance on three proteins

The first is the immunoglobulin binding domain B1 of

streptococcal protein G (GB1), which has been studied

intensively and frequently used as a benchmarking protein

in structural biology (Bouvignies et al. 2006; Gallagher

et al. 1994). GB1 consists of 56 amino acids with a glob-

ular fold containing both an alpha helix and four beta-

sheets. We analyze a microcrystalline sample of high

quality with a homogenous line width of ca. 0.5 ppm

measured as the full width at half maximum intensity

(FWHM). The second protein is the 76 residue Ubiquitin

(Zech et al. 2005; Igumenova et al. 2004; Vijaykumar et al.

1987), which is a regulatory protein, performing its myriad

functions through conjugation to a large range of target

proteins. Ubiquitin has a mixed secondary structural with

an alpha-helix, a short piece of 3(10)-helix, a mixed beta-

sheet that contains five strands, and seven reverse turns.

This sample has a larger line width of ca. 0.7 ppm on

average. The third sample is a more challenging hetero-

geneous system containing the 59 amino acid protein

CsmA in a biological mixed matrix formed with both lipids

and the small molecule cofactors, carotenoids and BChl

a (Kulminskaya et al. 2012). The protein resonances have

an average line width of ca. 0.8 ppm. CsmA is a small,

pigment-binding antenna protein from phototrophic green

sulfur bacteria, which has been found to play a funda-

mental role in energy transfer of those organisms (Frigaard

et al. 2005; Pedersen et al. 2008). Due to the small relative

amount of the protein (CsmA) of interest in this sample, the

sensitivity is quite much lower. Published complete

assignments exist for the two microcrystalline GB1 (Franks

et al. 2005) and Ubiquitin (Igumenova et al. 2004) samples

whereas almost complete assignments exist for CsmA

(Kulminskaya et al. 2012). The resonances for all three

systems were also assigned manually using standard pro-

cedures to compare with the automatic assignments.

Standard ssNMR experiments were conducted on an

Advance 700 MHz Bruker spectrometer (Rheistetten,

Germany) equipped with standard triple resonance 2.5 mm

and 4 mm probes. These include 2D and 3D homonuclear
13C DARR experiments and 3D heteronuclear NCACX,

NCOCX and CONCA experiments, all details can be found

in supplementary information. All peaks were picked

manually for all three targets and by an automatic proce-

dure for GB1 as well. For GB1, most of the peak lists are

relatively complete and most peaks can be assigned, the

automatically picked data is of lesser quality and CsmA

and Ubiquitin have even less optimal peak lists. The

quality of the all input peak lists is summarized in Table 1.

Further details related to the experiments and the peak

picking are described in the experimental procedures sec-

tion in the supplementary material. Representative
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examples of the spectra with picked peaks are shown in

Figure S1 in the supplementary material and in Kulmins-

kaya et al. (2012).

The peak list data were used together with the primary

sequence as input for the automatic assignment. C-terminal

parts of CsmA (residues 53–59) and Ubiquitin (residues

71–76) that are known to be flexible and hence not

observable with ssNMR were excluded from the calcula-

tions. Furthermore, the flexible loop in residues 7–10 in

Ubiquitin was also removed from the target input sequence.

Often information about disordered regions is available

from other biophysical techniques (Konermann et al. 2011;

Vilar et al. 2012; Alexandrescu 2001), or can be predicted

with high confidence from the sequence (He et al. 2009;

Coeytaux and Poupon 2005), or can be derived by in an

iterative approach by running the automatic assignments

and identifying regions with low estimated precision.

The automatic assignments were compared with the

manual ones. An automatic assignment was considered

correct if the error was less than 0.55 ppm. Assignments

with higher estimated precision, Qa, are considered more

reliable (see ‘‘Methods’’ section). We categorize an

assignment as validated, when Qa [ 80, other assignments

should be considered as tentative, but are often correct.

Almost all assignments (98.8 %) were validated for GB1

(numbers are for the manually picked peaks where nothing

else is stated), whereas fewer are validated for Ubiquitin

(63.1 %) and CsmA (48.8 %). Generally, we find that

assignments for backbone atoms, N, Ca and C0, are fre-

quently correct compared with the side chain atoms (and

are more often validated). We get a fraction of correct

assignments of 100–85.5 % for backbone and 91.8–74.2 %

for all atoms. The results are summarized in Table 2 and

visualized in Fig. 6 and described in more detail below.

For GB1 all the automatic assignments for the backbone

atoms are correct and validated. This is a remarkable result,

given that only a few standard experiments were used for

the assignments. For the side chain atoms, 21 (17.9 %) are

assigned with an error [ 0.55 ppm, most of these atoms

are aromatic carbons and only four of them are Cb. For the

Table 1 Quality of experimental peak picked data

Completeness Assignable rms (ppm)

GB1

NCOCX 81.3 % (63.2 %)a 98.2 % (91.8 %) 0.24 (0.25)

CONCA 92.6 % (96.3 %) 100.0 % (85.0 %) 0.17 (0.19)

DARR 2Db 90.7 % (90.7 %) 75.5 % (62.1 %) 0.16 (0.16)

NCACX 92.6 % (82.6 %) 98.6 % (79.2 %) 0.16 (0.16)

Average 89.3 % (83.2 %) 93.1 % (79.5 %) 0.18 (0.19)

CsmA

NCOCX 63.6 % 87.5 % 0.19

CONCA 78.0 % 83.3 % 0.34

NCACX 93.3 % 93.8 % 0.16

Average 78.3 % 88.2 % 0.23

Ubiquitin

NCOCX 73.6 % 82.5 % 0.29

CONCA 43.5 % 50.0 % 0.58

CAN(CO)CX 28.1 % 15.0 % 0.34

DARR 3D 5.3 % 26.8 % 0.53

DARR 2D 67.3 % 79.3 % 0.33

NCACX 79.4 % 84.4 % 0.16

Average 49.5 % 56.3 % 0.37

a Values in brackets are for automatically picked peaks, and all other values correspond to manually picked peaks
b DARR 2D and 3D produces cross peaks between 13C atoms close in space

Completeness: The fraction of the theoretical peaks that have a matched observed peak. The theoretical peaks are defined as all possible peaks

when including all intra-residue 13C–13C transfers (to CX) within a distance cut-off provided there exists a manual RA for this carbon. Except for

the DARR spectra where only aliphatic carbons were considered in the indirect dimensions, and excluding all aromatic carbons in all spectra

except for 2D DARR. Cut-offs were set, according to distances measured in corresponding X-ray structures, to 3.6 and 5.5 Å, respectively, for

first and last transfers in 3D DARR and 4.5 Å for 2D DARR, NCACX, NCOCX and CAN(CO)CX. A matched observed peak is defined as a

peak with a related theoretical peak with a chemical shift deviation less than 0.55 ppm in each dimension

Assignable: The fraction of observed peaks that can be matched to at least one theoretical peak as defined above

rms: Root mean square deviation on average for all matched peaks
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automatically picked peaks data the performance is also

very good with 98.8 % correct backbone assignments and

87.0 % correct for all resonances, demonstrating that

GAMES_ASSIGN is robust towards data with a higher

content of missing expected peaks and noise peaks. For

CsmA, the lines widths are larger and the sensitivity is

lower. Furthermore, due to overlap with resonances from

the non-protein cofactors in the sample, it was not possible

to obtain good data for standard 13C–13C DARR homo-

nuclear correlation spectra (and other similar techniques),

except for the Ca’s, which resonate in disjoint regions. Due

to this challenge, some of the side chain carbons, in par-

ticular non-aliphatic, could not be assigned neither by

manual nor automatic methods. However, even for this

challenging system with a limited set of experiments, we

still get a reasonable success for the automatic assignments

yielding 83.1 % correct assignments. This number increa-

ses to 90.8 % if considering only the validated assign-

ments. Ubiquitin is the largest system considered here and

shows a larger line width of ca. 0.7 ppm compared to GB1

(ca. 0.5 ppm). Still 85.5 % of the backbone assignments

get assigned correctly whereas 74.2 % are correct when

considering all atoms. These numbers increases to 93.8 %

and 88.8 % correct for backbone and all atoms, respec-

tively, for the validated assignments only.

To summarize, GAMES_ASSIGN derives the automatic

assignments with near perfect success (with 100 % correct

backbone assignments) for the micro-crystalline sample of

the small protein GB1 with narrow lines, and with con-

siderable success for the more challenging systems having

larger line widths and/or more residues.

It is not possible to deconvolute the effects of the sample

resonance line width, sensitivity, and the protein size.

However, we demonstrate below that GAMES_ASSIGN can

handle significant signal overlap by generating different

systematically varied sets of simulated peak lists for GB1

using our program VirtualSpectrum (Nielsen and Nielsen

2014) and evaluating the assignment performance. By this

analysis we address quantitatively how the line width

influences the accuracy on the assignment and how adding

more (advanced) experiments also would improve the

accuracy. A side benefit from using simulated peaks lists

based on published assignments is that the ‘‘true assign-

ments’’ are known completely free of human interpretation.

Performance dependence with increasing resonance

line widths and number of experiments

The program, VirtualSpectrum, was used to simulate

ssNMR spectra for GB1 for NCACX, NCACO, NCOCX,

CONCA and 2D 13C–13C DARR using different uniform
13C and 15N line widths. The peaks were simulated with

Gaussian signal shape, s:

s x; l; rð Þ ¼ A exp
� x� lð Þ2

2r2

 !
ð13Þ

where A is the intensity of the peak, l is the location

parameter, and the scaling parameter is varied by r = 0.3,

0.4, 0.5, 0.7, and 1.0 ppm for both 13C and 15N in all

dimensions corresponding to FWHM = 2.355r. All other

parameters are as described in (Nielsen and Nielsen 2014).

An excerpt from the DARR spectrum is shown in Figure S2

(Supplementary Information). It is observed that an

increasingly amount of peaks overlap and as a result

increasingly fewer peaks are found in the simulated peak lists

for larger line widths (see Fig. 7a, b). In the peak lists derived

from a line width of r = 0.3 ppm the total number of peaks

is 760 and only two of the peaks from the backbone experi-

ments are overlapped, whereas in contrast, only a total of 385

peaks are observed in the peak lists derived with a line width

of r = 1.0 ppm. Therefore, almost half of the peaks cannot

be assigned uniquely and have distorted positions due to

signal merging. Along with the increasing line width, the

number of incorrectly assigned resonances also increases

from 2 and 26 (out of 165 and 159 total) for backbone and

side chain, respectively, to 75 and 56, corresponding to line

widths of r = 0.3 ppm and 1.0 (Fig. 7c). Here an incorrect

Table 2 Performance of GAMES_ASSIGN for automatic assignments

GB1 CsmA Ubiquitin

All Validateda All Validated All Validated

Backboneb 100.0 % (98.8 %)c 100.0 % (98.7 %) 80.6 % 92.0 % 85.5 % 93.8 %

Side chaind 82.1 % (74.0 %) 84.6 % (75.0 %) 89.5 % 87.0 % 60.2 % 81.6 %

All 91.8 % (87.0 %) 93.0 % (87.5 %) 83.1 % 90.8 % 74.2 % 88.8 %

Results for backbone and side chain, validated and tentative
a Qa [ 80, see Supplementary section
b N, Ca and C0 atoms
c Values in brackets are for automatically picked peaks, other values are for manually picked peaks
d Including Cb atoms
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assignment is defined to have an error larger than the line

width (i.e. more generous definition with increasing line

width). In between these two extremes, we find that when

increasing the line width to r = 0.5 ppm, corresponding to

FWHM = 1.18 ppm, leads to 19 % fewer peaks observed

due to overlapping, and GAMES_ASSIGN still performs

very well by assigning 97 % of the backbone atoms (within

0.5 ppm) and 78 % of all atoms correctly.

To analyze whether the addition of more (advanced)

experiments increases the accuracy of the assignments for a

challenging case with a large line width, virtual peak lists

were generated for a line width of r = 1.0 ppm,

Fig. 6 Visualization of the assignment error as a function of residue

position in the sequence. a–c shows results for manually peak picked

data for GB1, CsmA and Ubiquitin, respectively. The absolute value

of the difference between the manual and automatic assignments is

shown on a logarithmic scale. The primary sequence is shown below

the chart for reference. Different atom types are shown with markers

with different symbol and shape (see symbolic legend to the right),

side chain carbon atoms are shown in gray and black in case of Cb.

The size of the marker is proportional to estimated confidence of the

assignment. A reference maximum acceptable error is highlighted

with a red broken line. The errors are clipped to a maximum of

5.0 ppm and a minimum of 0.01 ppm for increased readability.

Missing assignments are shown above the chart, assignment present

in the automatic but missing in the manual assignments shown with

filled markers, whereas those present in the manual assignments but

missing in the automatic are shown with open markers. The missing

x-ticks in panel c for residues 7–10, 71–76 are due to the absence of

manually assigned resonances for this region
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corresponding to FWHM = 2.355 ppm for different types

of spectra. Each experiment with its peak list was appended

to the assignment data one by one, or two at the same time,

and the performance of the assignments were then evalu-

ated for the cases of 5, 6, 7, 9, 11 and 12 experiments. Not

surprisingly, the accuracy of the assignment increases with

the number of experiments; the number of errors and the

type of experiments added are displayed in Fig. 7d. Adding

the CCC (3D DARR) in the first experiment addition

increases the dimensionality of the carbon side chain cor-

relations and therefore the number of assignment errors

decreases. Adding NCACB has less effect, whereas again

adding two experiments with new observations of the Ca
resonances, the N(CO)CACX and CAN(CO)CX experi-

ments with relayed transfer through C0, leads to a sub-

stantial decrease in the number of assignment errors both

for backbone and side chain. In contrast, adding the

‘‘opposite’’ experiments with observation of C0 and relayed

transfer through Ca, N(CA)COCX and CON(CA)CX,

actually leads to a small increase in the number of

assignment errors. This shows that generally the Ca
chemical shift is more useful for the RA process, and we

argue that this is due to the better dispersion and the more

unique amino acid typing information for Ca (Ulrich et al.

2008; Yao et al. 1997). Finally, adding a 4D CANCOCA

spectrum, again leads to a dramatic improvement of the

assignments arriving at 21 and 37 errors for backbone and

side chain resonances, respectively, when using all 12

experiments compared to 75 and 56 errors when using only

5 standard experiments. In this 4D CANCOCA spectrum

only 5 out of the 51 peaks in the peak list represent over-

lapping peaks compared to 16 out of 33 for 3D CONCA,

suggesting that increasing the dimensionality of the spectra

to resolve the overlap is very helpful for assisting RAs in

cases with large line widths.

Discussion

We have demonstrated here that GAMES_ASSIGN can

automatically assign the resonances for proteins with

average quality ssNMR experimental data using standard

ssNMR experiments. By this simplistic approach, the

assignments can be derived fast without the need for
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Fig. 7 Number of peaks and

performance using simulated

data with various line widths

and data sets. a, b number of

peaks as a function of line

width, r, corresponding to

FWHM = 2.355r in different

experiments (a) and total (b).

c Number of errors (Nerr) as a

function of line width; judged

by a fixed threshold of 0.5 ppm

shown with long dashes and

dash-dot line for side chain and

backbone atoms, respectively.

Nerr using a threshold equal to

the line width is shown with a

full and dotted line for backbone

and side chain atoms,

respectively. d Nerr as a function

of the number of experiments

(Nexp) with a fixed threshold for

an error set to 1.0 ppm. All and

backbone errors are shown with

dotted and full lines,

respectively, as in c. The

experiments are appended to the

extended set of experiments in

the order of 3D DARR (CCC)

(Nexp = 6), NCACB (Nexp = 7),

CAN(CO)CX ? N(CO)CACX

(Nexp = 9),

CON(CA)CX ? N(CA)COCX

(Nexp = 11), 4D CANCOCA

(Nexp = 12)
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applying special selective labeling techniques, implemen-

tation of advanced pulse sequences and without relying on

a very high field. GAMES_ASSIGN showed an excellent

performance for GB1 assigning all backbone resonance

correctly and 91.8 % when including also side chains, the

accuracy only drops slightly when using automatically

picked peaks (see Table 2). The data for GB1 is of excel-

lent quality, which is difficult to obtain for most cases,

however, we have shown that GAMES_ASSIGN still

performs reasonable for more challenging systems, such as

the heterogeneous baseplate systems, CsmA and the larger

protein Ubiquitin (see Table 2). A more reliable assign-

ment can be derived by trusting the assignments considered

as validated by GAMES_ASSIGN, while doing a manually

inspection of the parts of spectra corresponding to the other

assignments not considered as validated. Although the

performance of GAMES_ASSIGN in the present form is

very good in most cases, we imagine that a few things

could potentially improve the assignments. By using pre-

dictions for the secondary structure, it would be possible to

derive more specialized probability distributions for the

chemical shifts, which would probably assist in the spin

system typing process. GAMES_ASSIGN uses peak lists

as input and, in particular, information about the raw data

such as line width, peak shape, and noise level is neglected.

Including this information could also possibly improve the

performance.

The analysis presented here shows that GAMES_AS-

SIGN can handle a significant amount of overlapping

peaks. Increasing the line width up to 1.18 ppm at

FWHM did no significantly affect the assignment accu-

racy with 97 % backbone peaks still correctly assigned.

This is a very promising result since in biological sam-

ples, such as fibrils or in heterogeneous systems, line

widths are often large due to local heterogeneity of the

structure. When further increasing line width the assign-

ment process is more prone to errors, but by adding 3D

spectra with complementary combinations of resonance

observations and/or adding data with higher dimension-

ality, GAMES_ASSIGN is also capable of deriving an

almost error-free assignment. Unfortunately, the systems

with relatively large line widths often also have lower

sensitivity and thus acquiring data with higher dimen-

sionally may be impractical. High dimensional data could

be acquired faster by applying techniques for high-

throughput acquisition where fewer sampling points are

needed (Rovnyak et al. 2004; Kupce and Freeman 2003;

Kim and Szyperski 2003). Another solution could be to

use proton detection to enhance sensitivity, which would,

however, typically require special 2H labeling procedures

(Chevelkov et al. 2006; Zhou et al. 2012) and/or ultra-fast

MAS spinning (Holland et al. 2010). It is possible,

through the flexible implementation of GAMES_ASSIGN,

to include data from experiments derived with the two

above techniques.

Conclusion

We have presented the method, GAMES_ASSIGN that

assigns the resonances for proteins automatically using

peak list from various ssNMR experiments. Our method is

sufficiently robust to handle average quality ssNMR data,

which often suffer from overlapping and missing signals. A

stochastic approach is applied to derive the assignments

using concepts of variable pairing (paring peaks, spin

systems, and residues) based on the MENOVAR scheme,

which relies on the ideas of minimum entropy choice and

normal-variate rank selection. Candidate solutions are

combined to form optimized solutions using a GA.

Our method was tested on three different proteins and

shows very impressive result with 100 % correct backbone

assignments and 91.8 % correct assignment for all atoms

for GB1 and the performance is 80.6/83.1 % and 85.5/

74.2 %, respectively for backbone/all resonances for the

more challenging CsmA baseplate and Ubiquitin systems.

We demonstrated that GAMES_ASSIGN could handle a

significant amount of overlapping peaks by analyzing

simulated spectra with increasing line widths. For very

large line widths, the accuracy of the RAs is lower, but it

was shown here also, that these problems due to overlap

can be resolved by adding more dimensions to the spectra,

if possible, and/or by acquiring more experiments with

complementary data—preferentially providing chemical

shift information for Ca rather than for C0.
We envisage that GAMES_ASSIGN will be applied in

the analysis of ssNMR data to save valuable human

resource time and be used as a tool in the pipeline to solve

challenging protein structures.
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